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Artificial intelligence (AI) may be understood as the ability of 
machines to perform tasks which otherwise require human 
perception, reasoning, or learning. With the advent of deep 

learning, AI has achieved remarkable results across a wide range 
of medical tasks [1]. However, skilled clinicians and conventional 
infrastructure remain the backbones of healthcare and most 
ophthalmology patients outside research studies still do not benefit 
from AI tools [2]. Most proof-of-concept studies are not resulting 
in clinical deployment due to limited utility outside highly curated 
settings. However, emerging technology is resulting in models 
with generalisable abilities rather than being trained in a single, 
narrow task. There remain significant barriers to implementation, 
but these can be reframed as areas with the greatest potential for 
positive change. By addressing ethical issues, improving practical 
systems design, and enhancing research, AI can fulfill its potential 
to revolutionise eyecare.

Conventional models exhibit high performance but 
low versatility
Various ophthalmological AI models have received Food & Drug 
Administration (FDA) approval, and the first autonomous model 
across medicine to be awarded FDA approval was a diabetic 
retinopathy (DR) screening application [3,4]. This progress is 
remarkable, but there remains significant disparity between the 
thousands of models reported in the literature and those available 
for patient care, due to limited versatility of AI models in two 
domains: algorithmic and population based.

Algorithmic versatility is limited by ‘supervised’ training schemata 
employed by AI developers. Supervised learning depends on the 
narrow definition of a task such as classifying normal and disease-
associated images, and training using images labelled by qualified 
clinicians [5]. Using this accurate and reliable ‘ground truth’, AI 
models learn how to differentiate between classes independently 
and thereby attain comparable performance to clinicians. Many 
models with strong diagnostic performance in age-related macular 
degeneration, DR, glaucoma, and other conditions have been 
developed in this manner. Moreover, exploratory investigation using 
classes for which ophthalmological features are unknown has 
resulted in novel AI applications for prognostication, extraocular risk 
stratification, and identification of characteristics such as biological 
sex [6–8]. However, these models are not easily combined into 
a single application, meaning that use cases are as narrow as 
the initially defined task: a severe limitation relative to qualified 
ophthalmologists.

Supervised learning is also limited in terms of population-based 
versatility by the scope and quality of the data used for training. 
Performance may not generalise to broader populations if certain 
subgroups are underrepresented in the training data, and this has 
been shown to lead to biased output and unequal accuracy [9]. At 
a global level, high-quality ophthalmological data have only been 
sourced from a few high-income countries, and disproportionate 
representation of demographics within datasets compounds 

existing disparities [9–11]. Overcoming these algorithmic and 
population-based limitations is a significant challenge requiring 
large quantities of accurately labelled data from representative 
samples. The largest available datasets relate to fundus 
photography, particularly for DR [11]. It is therefore unsurprising that 
most FDA-approved models relate to fundus photography, and to 
DR [3]. 

The potential of foundation models
Mitigating the limitations of supervised learning is one way to 
improve the clinical utility of AI in ophthalmology. Multimodal 
foundation models—AI applications with general ability to interpret, 
process, and produce data in many formats—are emerging, 
beginning with large language models (LLMs) such as GPT-4, 
Gemini, and LLaMA 3; as well as image-based medical foundation 
models such as RETFound [12,13]. Large language models are 
pre-trained on large quantities of text to learn how language is 
formulated before being fine-tuned through grading of model 
outputs in response to queries. Image-based foundation models 
are developed in a similar way, with pretraining using enormous 
numbers of images followed by fine-tuning on more specific 
tasks. Large language models have attained impressive medical 
examination results and early experiments suggest that LLMs’ 
responses to a wide range of queries compare well with expert 
ophthalmologists [14]. The next step is combining text-based 
reasoning with image interpretation within ‘vision-language models’.

Foundation models could soon be able to contribute significantly 
to many aspects of clinical work with appropriate oversight: 
automating triage, assisting with diagnosis and management, as 
well as augmenting medical education by providing on-demand 
interactive expertise. Autonomous deployment of LLMs is currently 
precluded by their propensity to fabricate facts (‘hallucinate’) and 
inability to accurately express uncertainty [15]. Deployment in 
carefully defined roles with clinician supervision may be feasible, but 
such applications must fulfil the same requirements as conventional 
models to be implemented: robust validation, bias mitigation, and 
post-deployment governance [12,16]. Despite these barriers, great 
change in ophthalmology seems feasible. Large language models 
may leverage guidelines and textbooks to direct decision-making, 
and foundation models may be fine-tuned on specific populations to 
minimise disadvantage caused by algorithmic bias. Patients could 
converse with a chatbot before being triaged to eye units based 
on the urgency of their presentation; have vision tests and imaging 
interpreted by AI to make a diagnosis and suggest management 
decisions; and be discharged with initial advice and ability to 
have questions answered by chatbot on-demand. Supervising 
ophthalmologists may see fewer patients or require less time 
per appointment, helping to address severely prolonged waiting 
lists and improve the quality of care by allowing ophthalmologists 
to focus on communication and clinical skills rather than 
administrative tasks and unnecessary appointments [17]. 
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Barriers to implementation are opportunities for 
development
Significant barriers are preventing implementation of available 
technology and these also affect emerging foundation models. 
However, these barriers represent the areas with the most potential 
for innovation: where development could lead to impactful changes 
in ophthalmology and general healthcare.

First, ethical concerns must be addressed. Fundamentally, 
stakeholders must agree on what roles are appropriate for AI to 
take on. Should models be allowed to make decisions about care 
without clinician-oversight? What standard of validation is required 
to justify deployment of an AI decision-aid? Do patients have a right 
to care without AI intervention? As advanced AI applications remain 
relatively nascent in ophthalmology, there is time to answer these 
questions and design the future, but patients and practitioners must 
be consulted openly for a consensus to be reached. Additionally, 
bias and fairness concerns represent significant risks to affected 
populations, such as suboptimal performance in subgroups that 
are underrepresented in the data used for training and validation 
[9]. These require purposeful engineering and greater transparency 
with models intended for use in patient care [18,19]. Encouraging 
use of open-source models such as LLaMA 3 and RETFound will 
help maximise transparency and may also help address bias by 
facilitating specific local training or fine-tuning with data from 
relevant populations.

The formidable infrastructural requirement to deploy the most 
advanced AI models is another challenge. In addition to being 
prohibitively expensive for most healthcare institutions and 
even most countries, these enormous computational arrays are 
associated with a significant and growing carbon footprint [20]. 
As societies move towards reducing energy demand to mitigate 
climate change, difficult decisions must be made about which 
projects to support. To avoid perpetuating global inequality it 
is essential to investigate less energy-intensive and resource-
demanding methods of implementing available technology to 
improve provision of eyecare. Forecasts suggest that the energy 
costs of AI development will eventually plateau and then fall, but 
urgent consideration is required while demand continues to grow 
[21]. 

Finally, methodological shortcomings must be overcome. 
Very few AI interventions are pitted against clinical practice in 
randomised control trials (RCTs); just one ophthalmological study 
(evaluating an AI model for diagnosis of childhood cataract) 
was identified in a 2022 systematic review [22,23]. This makes it 
difficult to establish how new applications compare to conventional 
practice. Researchers should explicitly describe the purported 
benefits of an AI intervention and use these as endpoints in 
pragmatic RCTs to conclusively demonstrate effectiveness [24]. 
Without this evidence, it is difficult to justify expensive and risky 
delegation of clinical work to AI.

Does the world want AI ophthalmology?
Technology has progressed to a point where it is conceivable that 
AI systems may triage, diagnose, and manage ophthalmology 
patients with supervising human clinicians empowered to deliver 
a higher standard of care. Ophthalmology has historically been 
in the vanguard of medical AI development, and this trend seems 
likely to continue given the rich data collected in usual clinical 
practice. However, practical and technical limitations mean that 
radical changes are not yet feasible. While work to improve these 
applications continues, patients and practitioners must decide 
how AI applications should and should not contribute to clinical 
ophthalmology, providing essential direction for how research and 
development should be directed, governance structures can be 
established, and clinicians can be educated. 
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